

Structure and Bonding in **Organic Chemistry-Hybridization** DR. RAJENDRA R TAYADE **ASSISTANT PROFESSOR DEPARTMENT OF CHEMISTRY INSTITUTE OF SCIENCE, NAGPUR**

Hybridization

- The intermixing of orbitals and having slightly energies and the redistribution of their energies to form a new orbitals having identical shapes and equivalent energies is known as **hybridization**.
- New orbital thus formed are called **hybrid orbitals**.

Features of Hybridization

- Only those orbitals which have approximately equal energies and belong to the same atom undergo hybridization.
- Number of hybrid orbitals produced is equal to the number of atomic orbitals which undergo hybridization.
- The hybridization orbitals have equivalent energies and identical shapes.

Types of Hybridization

- Tetrahedral or sp3-hybridization.
- Trigonal or sp2-hybridization.
- Diagonal or sp-hybridization.

sp³ Orbital Hybridization

2s

• Mix together (hybridize) the 2*s* orbital and the three 2*p* orbitals

- Each of the four hybrid orbitals has **one-fourth** s-character and **three-fourth** p-character.
- This type of orbitals are formed when carbon atoms form only **single bonds** with other atoms.
- One of the lobes of an sp3 orbital is larger than other, it can **overlap better** with another when it forms a bond therefore sp3 hybrid orbitals forms **stronger bonds** then formed by unhybridised s or p orbitals.

Structure of Methane

tetrahedral

bond angles = 109.5° bond distances = 110 pm

sp² Orbital Hybridization

2p _____

2s

Mix together (hybridize) the 2s orbital and two of the three 2p orbitals

sp² Orbital Hybridization

2 of the 3 sp² orbitals are involved in s bond to hydrogen's; the other is involved in a s bond in a s bond to carbon

The sp2 hybrid orbitals has **one-third** s-character and **two-third** p-character.

> This type of orbitals are formed when carbon atoms form only **double bonds** with other atoms.

sp² Hybridization 3 Regions of Electron Density

An sp² Hybridized Atom

© 2004 Thomson/Brooks Cole

Views of Ethylene, C₂H₄

 σ bond framework (viewed from above the plane)

ethylene

Top view

Side view

Ethylene

sp Orbital Hybridization

$2p \rightarrow -$

2s

Mix together (hybridize) the 2s orbital and one of the three 2p orbitals

The sp Orbital

The sp hybrid orbitals has one-half s-character and one-half p-character.

This type of orbitals are formed when carbon atoms form only triple bonds with other atoms.

