Dr.S.R. Jigajeni

A unit cell is the smallest component of the crystal that reproduces the whole crystal when stacked together with purely translational repetition.

- Primitive (P) unit cells contain only a single lattice point.
- Internal (I) unit cell contains an atom in the body center.
- Face (F) unit cell contains atoms in the all faces of the planes composing the cell.
- Centered (C) unit cell contains atoms centered on the sides of the unit cell.

Face-Centered

Body-Centered

Number of Atoms Per Unit Cell

Simple cubic
1 atom/unit cell
$(8 \times 1 / 8=1)$
Body-centered cubic
2 atoms/unit cell
$(8 \times 1 / 8+1=2)$

Face-centered cubic
4 atoms/unit cell
$(8 \times 1 / 8+6 \times 1 / 2=4$

SC-coordination number

Crystallography

The study of geometric form and other physical properties of crystalline solids by using X rays, electron beams and neutron beams constitutes the science of crystallography.

Crystal Structure and Periodicity

Crystalline Materials
Atoms are in an ordered 3-D periodic array
Single crystal or polycrystalline solids
(metals, ceramics, semiconductors, some polymers)

Amorphous Materials
short range order
(glasses, many polymers)

Intermediates

Lattice

+ A lattice is a set of points or grid lines that possess the translational periodicity of the crystal -imaginary construct
+ The environment of each lattice point should be identical.
+ The lattice defines the coordinate system for atoms or molecules in a crystal.

Lattice of NaCl

The translational vectors in two dimension is given by

$$
\vec{r}=n_{1} \vec{a}+n_{2} \vec{b}
$$

The translational vectors in three dimension is given by

$$
\vec{r}=n_{1} \vec{a}+n_{2} \vec{b}+n_{3} \vec{c}
$$

The translational vectors $\vec{a}, \vec{b}, \vec{c}$, are called the basis vectors or the primitive vectors of the lattice or lattice parameters.

Crystal Lattice and wnit cell

A crystal lattice is a space lattice in which the lattice sites are occupied by atoms or clusters of atoms.
Each lattice point is associated with the same unit of groups of atoms, called 'Basis'.

Mathematically,
Space lattice + Basis = Crystial structure.

Unit Cell

Unit Cell - The smallest repeat unit which defines the crystal structure

A three dimensional unit cell.

Some features of the crystal-

1. Faces: A number of flat surfaces are present in crystal may be like or unlike.

2. Forms: The crystals may present in different forms 1. Simple form
3. Combinational form
4. Edges anal Interstitial angles:

The intersection of two adjacent faces of the crystal forms the edges of the crystals.
The relation between plane faces, straight edges, and interfacial angle is given by,

$$
f+c=e+2
$$

Cubic Systems - Based on a Cubic wnit Cell

Simple Cubic (SC)
One atom on each corner
Coordination number of 6
Body-centered Cubic (BCC)
One atom on each comer and one in the center
Coordination number of 8
Face-centered Cubic (FCC)
One atom on each comer and on each face
Coordination number of 12

$$
a=b=c, a=\beta=\gamma=90^{\circ}
$$

Simple Cubic (SC)

SC lattice and crystal structure

Lattice

Hang I atom on each lattice point \downarrow
Crystal Structure

$a=2 R$
Where:
$\mathrm{R}=$ atomic radius
$\mathrm{a}=$ lattice
parameter

Body Centered Cubic (BCC)

$\perp B C C$ lattice and crystal structure
One atom is at each corner and one is at the center of cube.
$a=4 R / \sqrt{3}$
where:
$R=$ atomic radius
$a=$ lattice parameter

Face Centered Cubic (IFCC)

One atom is at every corner and one atom is at the center of each face of the cube.

$a=4 R / \sqrt{2}$
where:
$R=$ atomic radius atom
$a=$ lattice parameter

No. of atoms per unit cell

Simple Cubic: There are 8 corner atoms and each corner atom is shared by 8 surrounding cubes so share of each atom is 8 X $1 / 8=1$ atom

Body centered cube: It has eight corner atoms at the corner and one center atom.
No. of atoms are
$1 \times 1 / 8+8 \times \Lambda 8=1+1=2$

Face centered cube: It has 8 atoms at corner and 6 face centered atoms. Each face centered atom is shared by 2 cubes and comer atom by 8 , so total no. of atoms per unit cell is:

$$
\begin{aligned}
& 6 \times 1 / 2=3 \text { and } 8 \times 1 / 8=1 \\
& 3+1=4
\end{aligned}
$$

Atomic Radius: It is defined as half the distance between nearest neighbors in a crystal, of a pure element. It is expressed in cube edges a.

For SC structure: $r=a / 2$

For BCC sturucture:
$r=\frac{\sqrt{3} a}{4}$

For FCC structure:

$$
r=\frac{\sqrt{2} a}{4}
$$

Atomic Packing Factor OR Packing Density:

Atomic packing factor is the ratio of volume occupied by the atoms in an unit cell (v) to the total volume of the unit cell (V).

Pucking factor $=\nu / V$
$A P F^{\prime}=$ voltume of atoms per wnit cell
Volume of the wnit cell

For SC:
Atoms per unit cell $=1$
Volum
Here,
$=431 \pi R^{3}$
$R=u / 2$
Volume of atom
$=4 / \beta \Pi(a / 2)^{3}=\Pi a^{3} / 6$
Volume of cube

$$
=V=a^{3}
$$

Atomic packing fraction $=v / V$

$$
\begin{aligned}
= & =\frac{\Pi a^{3} / \sigma}{a^{3}} \\
= & \Pi I / 6 \\
= & 0.52
\end{aligned}
$$

Atoms per unit cube $=2$
Volume of two atoms $=2 X 43 \Pi R^{3}$
Here $\quad R \quad=\sqrt{ } 3 a / 4$
Volume of atom $=v \quad=2 X 4 / 3 I I(\sqrt{ } 3 a / 4)^{3}$
$=\sqrt{3} / 8 \Pi a^{3}$
Voltume of cube $=V \quad=a^{3}$
Atomic packing fraction $=\nu / V$

$$
\begin{aligned}
& =\frac{\sqrt{ } 3 / B I a^{3}}{a^{3}} \\
& =\sqrt{3} / 8 I I \\
& =0.68
\end{aligned}
$$

For FCC :

Atoms per unit cube $=4$
Volume of four atoms $=4 X A 3 \Pi \Gamma R^{3}$
Here $\quad R \quad=\sqrt{ } 2 a / 4$
Volume of atom $=v \quad=4 \times 4 / 3 \Pi(\sqrt{ } 2 a / 4))^{3}$

$$
=\sqrt{2} / 6 I I a^{3}
$$

Votume of cube $=V \quad=u^{3}$
Atomic packing fraction $=1 / V$

$$
\begin{aligned}
& =\frac{\sqrt{2} / 6 \| a^{3}}{a^{3}} \\
& =\sqrt{2} / 6 \| I \\
& =0.744
\end{aligned}
$$

Co-ordination Number:
It is the number of nearest neighbors which an atom has in the wnit cell of any erystal stinucture. For SC: 6 For $B C C: 8$ For $\mathrm{FCC}: 12$

Voial Space:
The void space in the unit cell is the vacant space left utilised in the cell.
It is expressed as percentage also known as interstitial space.
Void spuce $=\left(1-A \mid P F^{\prime}\right) X 100$
For SC: 48% For BCC: 32% For $\operatorname{FCC}: 26 \%$

Densitis:

It is defineal as mass per unit volume of the crystal.

$$
\rho=\frac{Z M I}{N_{A} V}
$$

For SC: $\rho=1 / I$ $N_{A} Q^{3}$

For BCC: $\rho=2 M$ $\mathrm{N}_{A} a^{3}$

For HCC: $\rho=4 M I$
$N_{A} a^{3}$

A Symmetry operation is an operation that can be performed either physically or imaginatively that results in no change in the appearance of an object.

It is emphasized that in crystals, the symmetry is internal, that is it is an ordered geometrical arrangement of atoms and molecules on the crystal lattice.

There are 3 types of symmetry operations:
Rotation, Reflection, and Inversion.

Crystal Symmetry

The main symmetry elements of crystalline solid are:

1. Axis of symmetry
2. Plane of symmetry
3. Centre of symmetry

Axis of symmetry

An axis of symmetry is defined as a line about which the crystal may be rotated such that after a definite angular rotation about this axis the crystal comes in congruent position.
The axis of symmetry is given by angle $2 \Pi / n$ radians or $360 / n$ degrees and is called as n-fold symmetry.

Order of ' n '	Angle for congruent position	Axis called as
1	360	Identity
2	180	Diad
3	120	Triad
4	90	Tetrad
6	60	Hexad

$\theta=90^{\circ}$
$\theta=180^{\circ}$

Plane of Symmetry

When an imaginary plane can divide the crystal in two equal parts such that each part is exact mirror image of the other then the crystal is said to have a plane of symmetry.

There are two types:

1. The plane forms mirror images.
2. The plane form congruent images.

In cube there are three planes of symmetry parallel to face of cube.

In cube there are six more planes of symmetry formed by a pair of

opposite parallel edges:

Centre of symmetry

A centre of symmetry is such a point that any straight point drawn through this point intersects the crystal surface at equal distances in both directions joins identical points in crystal also known as Inversion centre.

Classification of soltids

The requirement is that a lattice shoula be invariant (all points have identical swrrownding) under the rotation operation $2 I I / n$, where $n=1,2,3,4,6$ or under minror operation places restrict the primutive vectors a and b. Latice thus obtained are calleal sbravais Latitices".

In three dimensions point symmetiny groups require 14 different latitice types: one general and thinteen special.

These 14 latitices are divided in to seven different groupss

Key things to know to describe a crystal Also-minitial Steps in the Cinstal Stiructural!

Determination

Unit Cell Parrameters $(a, b, c, a, \beta, \gamma)$
F Lattice T'ypes ($\left.P, I, F^{\prime}, C, \ldots\right)$

- Space Groups
- Positions of atoms not related by symmetry in unit cell --asymmetric unit

A space group consists of a set of symmetry elements that completely describes the symmetry of a crystal.

The important characteristics of seven alifferent crystal systems

Str No.	Crystal System	Bravais Lattices	No, of latice in the system	Latitice Symbols	Nature of the unit cell
1	Trictinic	Simple	1	P	$\begin{aligned} & a \neq b \neq c \\ & a \neq \beta \neq \gamma \end{aligned}$
2	Monoctinic	Simple, Base centered	2	P, C	$\begin{gathered} a \neq b \neq c \\ a=\gamma=90^{\circ} \neq \beta \end{gathered}$
3	Orthorhombic	Simple, Base centered, BCC, FCC	4	$\begin{gathered} P, C, I, \\ F \end{gathered}$	$\begin{gathered} a \neq b \neq c \\ a=\beta=\gamma=90^{\circ} \end{gathered}$
4	Tetragonal	Simple, BCC	2	P, I	$\begin{gathered} \boldsymbol{a}=\boldsymbol{b} \neq \boldsymbol{c} \\ a=\beta=\gamma=90^{\circ} \end{gathered}$

The important characteristios of seven different erystal systems

Stis No.	Cnystal System	Bravais Lattices	No, off lattice in the system	Lattice Symbo!	Nature of the unit cell
5	Cubic	Stimple, $B C C, H C C$	3	P, I, I	$\begin{gathered} a=b=c \\ a=\beta=\gamma=90^{\circ} \end{gathered}$
6	Inigonal	Simple	1	P	$\begin{gathered} a=b=c \\ a=\beta=\gamma<120^{\circ}, \neq 90^{0} \end{gathered}$
7	Hexagonal	Simple	1	P	$\begin{gathered} a=b \neq c \\ a=\beta=90^{\circ}, \gamma=120^{\circ} \end{gathered}$

Monoclinic

Stimple
BCC

Orthorhombic

Stimple
Base centered
BCC
HCC

Tetragonal
Stimple
BCC

Cubic
Simple

Trigonal
Stimple

Hexagonal Stimple

StrNo.	Characteristios	T'ypes of cubic cell		
		SC'	$B C C$	HCC
1.	No. of atoms per unit cell	1	2	4
2.	Atomic radius	a 12	$\sqrt{3} a / 4$	$\sqrt{2 a} / 4$
3.	Co ordination number	6	8	12
4	Atomic packing fraction	II/ $/ 6$	$\sqrt{3 I I I} / 8$	$\sqrt{2 I I / ~} 6$
5	Void space	48\%	32\%	26\%
6.	Density	$\frac{M I}{N_{A} a^{3}}$	$\frac{2 M I}{N_{A} a^{3}}$	$\frac{4 M I}{N_{A} a^{3}}$

Miller Indices

The Mriller Indices are the smallest possible integens which have the same ratios as the reciprocal of the intercepts of the planes concerned on three ares.

Mrethod of finding IVIIler Indices:

+ Determine the intercept of the plane along X, Y anal Z anis in terms of lattice constanti a, b, c
+ Determine the reciprocal of these interceptis.
+ Find LCMI and multiplly each by LCML.
+ Write the result in the form of (hkD), called as Mriller Indices.

Miller Indices of

 Directions

1. Choose a lattice point on the direction as the origin
2. Choose a crystal coordinate system with axes parallel to the unit cell edges
y 3. Find the coordinates, in terms of the respective lattice parameters a, b and c, of another lattice point on the direction.
3. Reduce the coordinates to smallest integers.
4. Put in square brackets [...]

Mitler Indices are (III)

Whe Miller Indices are (III))

For an intercept at infinity the index is zero.

\lrcorner Diamond unit cell is F.C.C type with four additional C atoms tetrahedrally bonded(black ones). Corner atoms contributes to $1 / 8$ th of the atom to the unit cell , Face centered atoms contributes $1 / 2$ of the atom .Now, Total atom in one cell can be summed up to :

Structure of NaCl (Rock salt)

- FCC type.
- Co-ordination number 6:6.
- Calculation of no. of atoms of NaCl cell:
Cl at corners: $\quad(8 \times 1 / 8) \quad=1$
Cl at face centres $(6 \times 1 / 2)=3$
Na at edge centres $(12 \times 1 / 4)=3$
Na at body centre

Unit cell contents are $4\left(\mathrm{Na}^{+} \mathrm{Cl}^{-}\right)$
i.e. per each unit cell, 4 NaCl units will be present

Zinc Blende（肉锌矿）Structure

$\bigcirc \mathrm{Zn}$

A unit cell for ZnS structure
ebooks．edhole．com
＊Coordination number： 4
All ions are tetrahedrally coordinated．
＊All corner and face positions of the cubic cell are occupied by S atoms，while the $\mathbf{Z n}$ atoms fill interior tetrahedral positions．Vise versa．
＊ZnS，ZnTe，and SiC

