CARBENES AND NITRENES REACTION INTERMEDIATES

Dr.Phadnaik

What are Carbenes? Nitrenes?

• Neutral, divalent carbon species containing six valence electrons

• Neutral, monovalent nitrogen species containing six valence electrons

Electron deficient

Highly reactive

Singlet and Triplet States

- sp² hybridized carbon
- non-bonding electrons have opposite spin occupy an sp² orbital
- XCY angle 100-110°

- sp² hybridized carbon (or sp?)
- non-bonding electrons have same spin – occupy an sp² and p orbital
- XCY angle 130-150°

Triplet state is more stable than singlet state

Structure and bonding

- Singlet carbenes are spin-paired. This molecule adopts an sp² hybrid structure.
 - Eg-:CH2 :CHPh :CHPh2 :CHR
- Triplet carbenes have two unpaired electrons.
- Most carbenes have a nonlinear triplet ground state, except for those with nitrogen, oxygen, or sulfur atoms, and halides directly bonded to the divalent carbon.
 - Eg:- :CCl2 :CHCl :C(OMe)2

Carbene Examples

5.Generation Of Carbenes:

(a) From aliphatic diazo compounds:

Aliphatic diazo compounds can be decomposed either photolytically or thermally to generates carbenes.

$$\bigcap_{R} C = N_2 \xrightarrow{h\nu} \bigcap_{R} C: + N_2$$

(b) From ketenes:

Ketenes can be decomposed thermally or photolytically to generate carbenes.

R C=C=O:
$$\frac{h\nu}{\text{or }\Delta}$$
 R C: + CO

(c) From epoxides: Photolytic decomposition of epoxides to carbene.

$$\begin{array}{c|c}
R & N & R \\
R & N & \text{or } \Delta
\end{array}$$
R
R
C: + N₂

(e) From tetrazoles: Thermal Decomposition of tetrazoles generates carbenes.

$$\begin{array}{c|c}
R & N \\
N & N & \xrightarrow{\Delta} RC = \stackrel{\bigoplus \Theta}{NNH} \longrightarrow RCH = N_2 \\
H & & & & & & & & & & \\
RCH & & & & & & & & & \\
RCH & & & & & & & & & \\
\end{array}$$

(f) From alkyl halide: This method is used for generation of chlorocarbenes.

$$CHCl_3 \xrightarrow{base} \overline{C}Cl_3 \xrightarrow{} :CCl_2 + Cl^O$$

(g) From ylides: Thermal decomposition of vlides generates carbenes.

$$\begin{array}{c}
R \\
R
\end{array}
\xrightarrow{\Theta} (CH_3)_2 \xrightarrow{\Delta \text{ or } h\nu} R \\
R
\end{array}$$

$$\begin{array}{c}
R \\
R
\end{array}$$

$$\begin{array}{c}
C: + S (CH_3)_2 \\
R
\end{array}$$

Reactions of carbenes

- Carbenes are highly electrophilic species.
- Three major classes of carbene reactions.
- (1) Carbene insertions
- (2) Carbene additions
- (3) Carbene rearrangements

6. Reactions Of Carbenes:

(a) Cycloadditions: Carbenes add on an olfinic double bond giving a cyclopropane derivative R₂

$$c = c + cR_2 \rightarrow c - c$$

->When the reaction is performed in liquid medium singlet carbene is formed, which adds on in stereospecific way. Thus, cis-alkene gives cis-cyclopropane and trans-alkene gives trans-cyclopropane.

$$C = C + \begin{pmatrix} R \\ H \end{pmatrix} CH_2 \longrightarrow \begin{pmatrix} R \\ R \end{pmatrix} C - C H$$

$$trans-olefin \qquad trans-cyclopropane$$

$$R = C + \begin{pmatrix} R \\ H_2 \end{pmatrix} CH_2 \longrightarrow \begin{pmatrix} R \\ H_2 \end{pmatrix} C - C H$$

$$cis-olefin \qquad cis-cyclopropane$$

->In gaseous medium, the attacking species is triplet carbene, which does not add stereospecifically.

 ->Addition of singlet carbene to an olfin occurs in a concerted manner and therefore is stereospecific.

->In triplet carbene the reaction place in two place:

Carbene.....

Insertion

$$R^{1}$$
 $C: + \stackrel{A}{\downarrow}$
 R^{2}
 $C: + \stackrel{A}{\downarrow}$
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{3}

· Addition to multiple bonds

$$\begin{array}{ccccc}
R_{A}^{1} & & & & & & \\
R_{2}^{2} & & & & & & \\
R_{2}^{2} & & & & & \\
\end{array}$$

Rearrangement

RING EXPANSION REACTION

(2) NITRENES

- Nitrenes are derivatives of the molecule :NH in which nitrogen is monovalent. The nitrogen atom in nitrenes has a sextet of electrons.
- 2. Similar to carbene, singlet and triplet states are possible for nitrenes.

 Stability of Nitrenes: As nitrogen is more electronegative it holds its electron closer to the nucleus which decreases energy and increases stability.

4. Generation Of Nitrenes

(a) From azides: This is most common method for the generation of nitrenes.

$$R - \stackrel{\Theta}{N} - \stackrel{\Theta}{N} = N \xrightarrow{hvor\Delta} R - \stackrel{\cdots}{N} + N_2$$

(b) From sulfinylamines: Pyrolysis of sulfinylamines generates nitrenes

$$Ph - N = S = O \xrightarrow{\Delta} Ph - \ddot{N} + SO$$

.

a)
$$R-N=N=N: \frac{h\nu}{or} R-N + N_2$$

$$R = \text{alkyl,aryl, H} \Delta$$

b)
$$R - SO_2 - N = N = N$$
: $hv \rightarrow R - SO_2 - N \rightarrow N_2$

$$R = \text{alkyl, aryl} \qquad \Delta$$

c)
$$RO-C-N=N=N=N$$
: hv $RO-C-N+N_2$
 O
 $R = alkyl, aryl$

R = alkyl, aryl

d)
$$RO-C-NH-O-SO_2$$

$$base$$

$$RO-C-NH-O-SO_2$$

$$base$$

$$RO-C-NH-O-SO_2$$

$$NO_2$$

$$RO-C-NH-O-SO_2$$

5. Reactions Of Nitrenes:

(a) Insertion: Nitrenes, particularly acyl nitrenes and sulfonyl nitrenes can insert into C-H bonds.

$$R' - C - N + R_3C - H \longrightarrow R_3C - NH - C - R'$$

(b) Dimerization: The dimerization of nitreres give azobenzene.

$$2Ar \stackrel{\sim}{N} \longrightarrow Ar - N = N - Ar$$

(c) Cycloaddition of alkenes: Addition of inert solvent converts singlet nitrenes to triplet nitrenes and reaction becomes less streospecific.

$$R - N = N^{\bullet} = N^{\bullet} = N^{\bullet} + C = C \xrightarrow{H_3} H \xrightarrow{h\nu} CH_3 + H_3C \xrightarrow{H_3} H \xrightarrow{trans} CH_3$$

REACTIONS OF NITRENES

 Singlet nitrene undergoes a σ-insertion to give 2⁰ - amines. For eg;

• π - Insertion of nitrenes into a C=C bond gives aziridines.

 Acyl nitrenes undergo skeletal rearrangement to give alkyl isocyanates.this rearrangements is involved in Crutius and Hoffmann rearrangements.

Thank You