

Advanced Stereochemistry

Presented By

Dr. Sujata Deo Associate Professor Department of Chemistry Govt. Institute of science, Nagpur

Syllabus

ORGANIC CHEMISTRY SPECIALIZATION CH-401: Paper XIII (Special I-Organic Chemistry)

Unit III: 15 h

A] Advanced Stereochemistry:

- **❖**Conformation of sugars, monosaccharides, disaccharides, mutorotation,
- *Recapitulation of Stereochemical concepts- enantiomers, diastereomers, homotopic and heterotopic ligands, Chemo-, regio-, diastereo-and enantio-controlled approaches;
- **❖**Chirality transfer,
- **❖** Stereoselective addition of nucleophiles to carbonyl group: Re-Si face concepts,

Models:Cram's rule, Felkin Anh rule, Houk model, Cram's chelate model.

Asymmetric synthesis use of chiral auxiliaries, asymmetric hydrogenation, asymmetric epoxidation asymmetric dihydroxylation,

Unit 3 - Stereochemistry

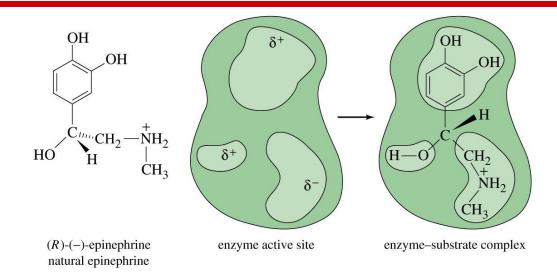
- Stereoisomers
- Chirality
- (R) and (S) Nomenclature
- Depicting Asymmetric Carbons
- Diastereomers
- Fischer Projections
- Stereochemical Relationships
- Optical Activity
- Resolution of Enantiomers

- Stereochemistry:
 - The study of the three-dimensional structure of molecules
- Structural (constitutional) isomers:
 - same molecular formula but different bonding sequence
- Stereoisomers:
 - same molecular formula, same bonding sequence, different spatial orientation

Stereochemistry plays an important role in determining the properties and reactions of organic compounds:

Caraway seed

spearmint


The properties of many drugs depends on their stereochemistry:

CH₃NH_{1.}

(S)-ketamine anesthetic

(R)-ketamine hallucinogen

Enzymes are capable of distinguishing between stereoisomers:

OH OH OH OH OH
$$CH_3$$
 H_2 CU_3 H_4 CH_3 C

(*S*)-(+)-epinephrine unnatural epinephrine

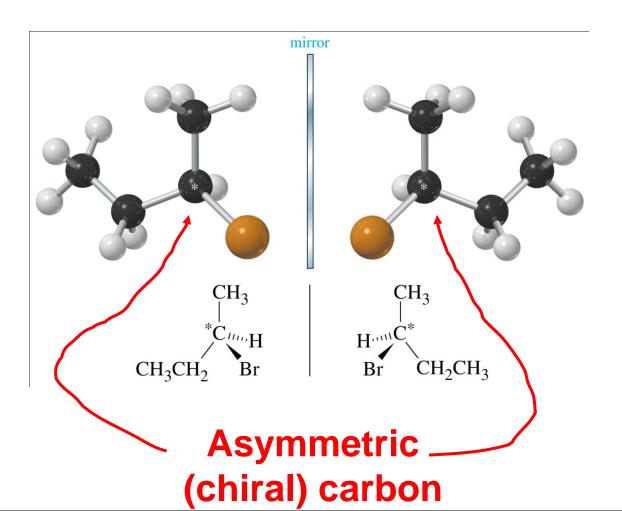
does not fit the enzyme's active site

Types of Stereoisomers

- Two types of stereoisomers:
 - enantiomers
 - two compounds that are nonsuperimposable mirror images of each other
 - diastereomers
 - Two stereoisomers that are not mirror images of each other
 - Geometric isomers (cis-trans isomers) are one type of diastereomer.

Chiral

- Enantiomers are chiral:
 - Chiral:
 - Not superimposable on its mirror image
- Many natural and man-made objects are chiral:
 - hands
 - scissors
 - screws (left-handed vs. right-handed threads)

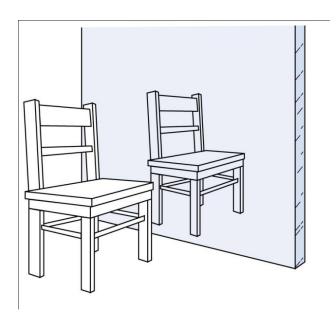


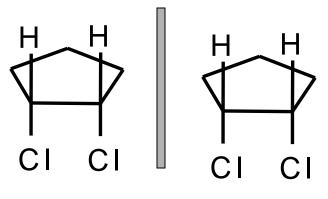
Right hand threads slope up to the right.

Chiral

■ Some molecules are chiral:

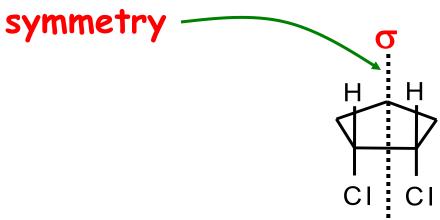
Asymmetric Carbons


- The most common feature that leads to chirality in organic compounds is the presence of an asymmetric (or chiral) carbon atom.
 - A carbon atom that is bonded to four different groups
- In general:
 - \blacksquare no asymmetric $C \longrightarrow$ usually achiral
 - \blacksquare 1 asymmetric $C \longrightarrow$ always chiral
 - ≥ 2 asymmetric C → may or may not be chiral


Asymmetric Carbons

Example: Identify all asymmetric carbons present in the following compounds.

Achiral


- Many molecules and objects are achiral:
 - identical to its mirror image
 - not chiral

Internal Plane of Symmetry

- Cis-1,2-dichlorocyclopentane contains two asymmetric carbons but is achiral.
 - contains an internal mirror plane of

Any molecule that has an internal mirror plane of symmetry is achiral even if it contains asymmetric carbon atoms.

Internal Plane of Symmetry

- Cis-1,2-dichlorocyclopentane is a meso compound:
 - an achiral compound that contains chiral centers
 - often contains an internal mirror plane of symmetry

Internal Plane of Symmetry

Example: Which of the following compounds contain an internal mirror plane of symmetry?

$$CH_2CH_3$$
 CH_2CH_3
 CH_3CH_2C
 CH_3CH_3

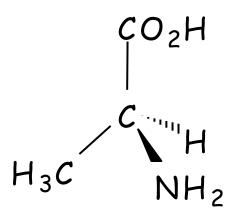
$$HO_2C$$
 CO_2H
 $C-C$
 HO
 H
 H
 OH

Chiral vs. Achiral

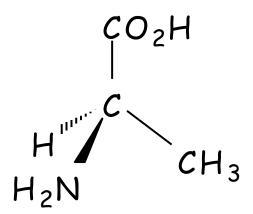
- To determine if a compound is chiral:
 - 0 asymmetric carbons: → Usually achiral
 - 1 asymmetric carbon: → Always chiral
 - - Does the compound have an internal plane of symmetry?
 - -Yes: → achiral
 - -No:
 - If mirror image is nonsuperimposable, then it's chiral.
 - If mirror image is superimposable, then it's achiral.

Conformationally Mobile Systems

- Alkanes and cycloalkanes are conformationally mobile.
 - rapidly converting from one conformation to another
- In order to determine whether a cycloalkane is chiral, draw its most symmetrical conformation (a flat ring).


Chiral vs. Achiral

Example: Identify the following molecules as chiral or achiral.


trans-1,3-dibromocyclohexane ethylcyclohexane

- Stereoisomers are different compounds and often have different properties.
- Each stereoisomer must have a unique name.
- The Cahn-Ingold-Prelog convention is used to identify the configuration of each asymmetric carbon atom present in a stereoisomer.
 - (R) and (S) configuration

■ The two enantiomers of alanine are:

Natural alanine (S)-alanine

Unnatural alanine (R)-alanine

- Assign a numerical priority to each group bonded to the asymmetric carbon:
 - group 1 = highest priority
 - group 4 = lowest priority
- Rules for assigning priorities:
 - Compare the first atom in each group (i.e. the atom directly bonded to the asymmetric carbon)
 - Atoms with higher atomic numbers have higher priority

Example priorities:

■ In case of ties, use the next atoms along the chain as tiebreakers.

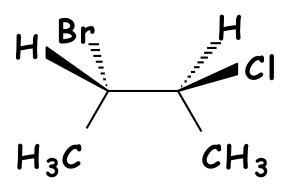
$$CH(CH_3)_2 > CH_2CH_2Br > CH_3CH_2$$

Treat double and triple bonds as if both atoms in the bond were duplicated or triplicated:

$$-c \equiv Y \xrightarrow{\qquad \qquad } -\begin{matrix} Y \\ I \\ C \\ Y \end{matrix} - C$$

- Using a 3-D drawing or model, put the 4th priority group in back.
- Look at the molecule along the bond between the asymmetric carbon and the 4th priority group.
- Draw an arrow from the 1st priority group to the 2nd group to the 3rd group.
 - Clockwise arrow

- (R) configuration


■ Counterclockwise arrow

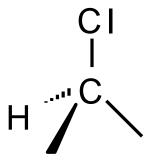
(S) configuration

Example: Identify the asymmetric carbon(s) in each of the following compounds and determine whether it has the (R) or (S) configuration.

Example: Name the following compounds.

- When naming compounds containing multiple chiral atoms, you must give the configuration around each chiral atom:
 - position number and configuration of each chiral atom in <u>numerical order</u>, separated by commas, all in () at the start of the compound name

(2S, 3S)-2-bromo-3-chlorobutane


Example: Draw a 3-dimensional formula for (R)-2-chloropentane.

Step 1: Identify the asymmetric carbon.

Step 2: Assign priorities to each group attached to the asymmetric carbon.

Step 3: Draw a "skeleton" with the asymmetric carbon in the center and the lowest priority group attached to the "dashed" wedge (i.e. pointing away from you).

Step 4: Place the highest priority group at the top.

Step 5: For (R) configuration, place the 2nd and 3rd priority groups around the asymmetric carbon in a clockwise direction.

Step 6: Double-check your structure to make sure that it has the right groups and the right configuration.

Example: The R-enantiomer of ibuprofen is not biologically active but is rapidly converted to the active (S) enantiomer by the body. Draw the structure of the R-enantiomer.

Example: Captopril, used to treat high blood pressure, has two asymmetric carbons, both with the S configuration. Draw its structure.