
Paper –I 

Functional Analysis 



A norm        on a vector space X is said to be 
equivalent to a norm          on X if there are 
positive numbers a and b such that for all                             
we have                    
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1.Lemma (linear combinations). 
 
Let                                      be a linearly independent set of  
 
vectors in a normed space X (of any dimension) .Then  
 
there is a number             such that for any choice  of scalars              
 
  
we have  
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Using  Lemma 1 ,we can prove the following    theorem. 
 
 
2.Theorem. 
On a finite dimensional vector space X ,any norm                           
 
is equivalent  to any other norm                 . 
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