Govt. Institute of Science Ngpur

Power Point Presentation for M. Sc. Semester I Subject- Abstract Algebra

Conjugacy and G-set

Definition:- Let G be a group and X be a set. Then G is said to act on X if there is a

mapping \emptyset :G x X—>X, with $\emptyset(a, x)=a^*x$, such that for all $a, b \in G$, $x \in X$,

(i) a*(b*x)=(ab)*x,

(ii) e^*x)=x.

The mapping ø is called the action of G on X and X is said to be a G-set.

Examples of G-sets

1) Let G be the additive group R, and X be the set of complex numbers z

such that |z| = 1. Then X is a G-set under the action $a^*x = exp(ia) z$, where

a \in G and x \in X. Here the action of a is the rotation through an angle θ =a

radians in anticlockwise.

- 2) Let $G = S_5$ and $X = \{x1, x2, x3, x4, x5\}$ be a set of beads forming a circular ring. Then X is a G-set under the action $\sigma^*xj - x\sigma(j), \sigma \in G$.
- 3) Let G = D4 and X be the vertices 1,2,3,4 of a square. X is a G-set under the action $g^*i=g(i)$, $g \in D4$, $i \in \{l,2,3,4\}$.
- Let G be a group. Define a*x=ax, a ∈ G, x ∈ G. Then, clearly, the set G is a G-set. This action of the group G on itself is called translation.
- 5) Let G be a group. Define $a^*x = axa^{-1}$, $a \in G$, $x \in G$. We show that G is a G-set. Let $a, b \in G$. Then $(ab)^*x = ab^*x = abx(ab)^{-1} = a(bxb^{-1})a^{-1} = a^*(b^*x)$. Also, $e^*x = x$. This proves G is a G-set. This action of the group G on itself is called conjugation.

Theorem:- Let G be a group and let X be a set.

- (i) If X is a G-set, then the action of G on X induces a homomorphism ø:G →S_x,
- (ii) Any homomorphism \emptyset :G —>S_x, induces an action of G onto X.

Proof :-

(I) We are given that X is a G-set, hence G acts on X.

Let * be the action of G on X.

We define $\emptyset: G \longrightarrow S_x$ by $\emptyset(a) = f_a$ for all $a \in G$

where $f_a: X \longrightarrow X$ is a mapping defined as $f_a(x) = a^*x$, $a \in G$, $x \in X$.

Clearly $f_a \in S_x$, for all $a \in G$.

Let $a, b \in G$.

Then $f_{ab}(x) = (ab)^*x = a^*(b^*x) = f_a(f_b(x)) = f_af_b(x)$ for all $x \in X$ imply $\phi(ab) = f_{ab}$ = $f_af_b = \phi(a) \phi(b)$ i.e. ϕ is a group homomorphism. (II) Let $\emptyset:G \longrightarrow S_x$ be a group homomorphism. Then $\emptyset(ab) = \emptyset(a) \ \emptyset(b)$. Let $\emptyset(a)=f_a$, a $\in G$, where $f_a:X \longrightarrow X$ is a mapping defined as $f_a(x) = a^*x$, a $\in G$, $x \in X$. =>f_ab=fafb

Then for a, $b \in G$, $(ab)*x=f_{ab}(x)=f_af_b(x)=a*(b*x)$.

Also, $e^*x = f_e(x) = x$, since $\phi(e) = f_e$ is an identity element of Sx.

Therefore by definition X is a G-set.