Govt. Institute of Science Ngpur

Power Point Presentation for

M. Sc. Semester I

Subject- Abstract Algebra

Conjugacy and G-set

Definition:- Let G be a group and X be a set. Then G is said to act on X if there is a mapping $\varnothing: G x X \longrightarrow X$, with $\varnothing(a, x)=a * x$, such that for all $a, b \in G, x \in X$,
(i) $a^{*}\left(b^{*} x\right)=(a b)^{*} x$,
(ii) $\left.e^{*} x\right)=x$.

The mapping \varnothing is called the action of G on X and X is said to be a G-set.

Examples of G-sets

1) Let G be the additive group R, and X be the set of complex numbers z
such that $|z|=1$. Then X is a G-set under the action $a^{*} x=\exp (i a) z$, where
$a \in G$ and $x \in X$. Here the action of a is the rotation through an angle $\theta=a$
radians in anticlockwise.
2) Let $\mathrm{G}=S_{5}$ and $\mathrm{X}=\{\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4, \mathrm{x} 5\}$ be a set of beads forming a circular ring. Then X is a G-set under the action $\sigma^{*} x j-x \sigma(j), \sigma \in G$.
3) Let $G=D 4$ and X be the vertices $1,2,3,4$ of a square. X is a G-set under the action $g^{*} i=g(i), g \in D 4, i \in\{1,2,3,4)$.
4) Let G be a group. Define $a^{*} x=a x, a \in G, x \in G$. Then, clearly, the set G is a Gset. This action of the group G on itself is called translation.
5) Let G be a group. Define $a^{*} x=a x a^{-1}, \mathrm{a} \in \mathrm{G}, \mathrm{x} \in \mathrm{G}$. We show that G is a G-set. Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$. Then $(\mathrm{ab})^{*} \mathrm{x}=a b^{*} x=a b x(a b)^{-1}=a\left(b x b^{-1}\right) a^{-1}=a *(b * x)$. Also, $e^{*} x=x$. This proves G is a G-set. This action of the group G on itself is called conjugation.

Theorem:- Let G be a group and let X be a set.
(i) If X is a G-set, then the action of G on X induces a homomorphism $\emptyset: G \longrightarrow S_{x}$,
(ii) Any homomorphism $\emptyset: G \longrightarrow S_{x}$, induces an action of G onto X.

Proof :-

(I) We are given that X is a G-set, hence G acts on X .

Let * be the action of G on X.
We define $\varnothing: G \longrightarrow S_{x}$ by $\varnothing(a)=f_{a}$ for all $a \in G$
where $f_{a}: X \longrightarrow X$ is a mapping defined as $f_{a}(x)=a * x, a \in G, x \in X$.
Clearly $f_{a} \in S_{x}$, for all $a \in G$.
Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$.
Then $\mathrm{fab}_{\mathrm{ab}}(\mathrm{x})=(\mathrm{ab})^{*} \mathrm{x}=\mathrm{a}^{*}\left(\mathrm{~b}^{*} \mathrm{x}\right)=\mathrm{fa}\left(\mathrm{f}_{\mathrm{b}}(\mathrm{x})\right)=\mathrm{f}_{\mathrm{a}} \mathrm{f}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$ imply $\varnothing(\mathrm{ab})=\mathrm{f}_{\mathrm{ab}}$
$=f_{\mathrm{a}} \mathrm{f}_{\mathrm{b}}=\varnothing(\mathrm{a}) \varnothing(\mathrm{b})$ i.e. \varnothing is a group homomorphism.

Let $\varnothing(a)=f_{a}, a \in G$, where $f_{a}: X \longrightarrow X$ is a mapping defined as $f_{a}(x)=a^{*} x, a \epsilon$
$\mathrm{G}, \mathrm{x} \in \mathrm{X} .=>\mathrm{f}_{\mathrm{ab}}=\mathrm{f}_{\mathrm{a}} \mathrm{f}_{\mathrm{b}}$
Then for $\mathrm{a}, \mathrm{b} \in \mathrm{G},(\mathrm{ab})^{*} \mathrm{x}=\mathrm{f}_{\mathrm{ab}}(\mathrm{x})=\mathrm{f}_{\mathrm{a}} \mathrm{f}(\mathrm{x})=\mathrm{a}^{*}(\mathrm{~b} * \mathrm{x})$.
Also, $\mathrm{e}^{*} \mathrm{x}=\mathrm{fe}(\mathrm{x})=\mathrm{x}$, since $\varnothing(\mathrm{e})=\mathrm{fe}_{\mathrm{e}}$ is an identity element of Sx .
Therefore by definition X is a G-set.

