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Proposition.  Let P,S,T denote operators on       .Then: 
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The Primary Decomposition 

Let E be a vector space real or  complex  and T be an operator on E. Assume  that T has 

distinct real eigenvalues say                       . 

The characteristic  polynomial of T is given as 

 

 

 

Here  the integer         is the multiplicity of           ; note that 

 

 

The generalized eigenspace of T belonging to        is defined to be the subspace   

 

 

This subspace is invariant under T. 
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Primary Decomposition Theorem: Let T be an operator on E, 

where E is real or complex vector space and T has real eigenvalues. 

Then E is the direct sum of the generalized eigenspaces of T. The 

dimension of each generalized eigenspace equals the multiplicity of 

the corresponding eigenvalue. 

Theorem: Let  T ϵ L(E) ,where E is complex if T has a nonreal  

eigenvalue . Then  T=S+N ,where SN=NS and S is diagonalizable and 

N is nilpotent. 


