Institute of Science,Nagpur ClassfB.scll Maths paper v Topic: MEAN VALUE THEOREMS

ROLLE'S THEOREM

IF ,f(x) be a function such that

a. $\quad f(x)$ is continuous in [a, b]
b. $\quad f^{\prime}(x)$ exists for every point in open interval (a, b)
c. $\quad f(a)=f(b)$

Then there exists at least one point $c \epsilon(a, b)$ such that $f^{\prime(c)}=0$

EX: Verify Rolle's theorem for the function

$$
f(x)=x^{2}-6 x+8
$$

Solution :

i.As $f(x)=x^{2}-6 x+8$ is polynomial function, it continuous in [2,4]
ii. It is derivable in $(2,4)$
iii. $f(2)=f(4)=0$

So, by Rolle's theorem there must exist at least one number
c between 2 and 4 such that $f^{\prime(c)}=0$

$$
\text { now, } f^{\prime}(x)=2 x-6
$$

Therefore, $f^{\prime}(c)=2 c-6=0$ giver $c=3$ and $c \in(2,4)$ therefore, theorem is verified.

LAGRANGE'S MEAN VALUE THEOREM

STATEMENT

IF $f(x)$ be a function such that
i. f is continuous in closed interval $[a, b]$
ii. f is differentiable in (a, b)
then there exists at least one point $c \epsilon(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

EX. Verify Lagrange's mean value theorem for
 $$
f(x)=2 x^{2}-7 x+10 \text { in }[2,5]
$$

Solution :

i. The function is polynomial function , hence continuous in [2,5]
ii. ii. It is derivable in $(2,5)$ as $f^{\prime}(x)=4 x-7$ exists at each value of x in $(2,5)$ and $f(a)=4, f(b)=25$

$$
\text { Therefore, L.M.V.T. } \frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

$$
\text { or } 4 c-7=\frac{25-4}{5-2}=7
$$

Therefore, $4 \mathrm{c}=7+7=14$

Therefore $\mathrm{c}=\frac{14}{4}=\frac{7}{2} \epsilon(2,5)$
Hence L.M.V.T . Is verified.

CAUCHY's MEAN VALUE THEOREM

STATEMENT

IF two functions $f(x)$ and $g(x)$ defined on $[\mathrm{a}, \mathrm{b}]$ are

> i. Continous on $[\mathrm{a}, \mathrm{b}]$
> ii. Differntiable on (a, b) and
> iii. $g(x) \neq 0$ for any $x \in(a, b)$
then there exists at least one value c between a and b i.e. c $\in(a, b)$ such that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Verify Cauchy Mean Value Theorem for

$$
\mathrm{f}(x)=e^{\mathrm{x}}, \varnothing(x)=e^{-x} \text { in }[\mathrm{a}, \mathrm{~b}]
$$

Solution:

$$
f(x)=e^{x}, \emptyset(x)=e^{-x},
$$

f and \emptyset both are continuous in $[\mathrm{a}, \mathrm{b}]$, derivable in open interval (a, b) Therefore, By Cauchy's theorem,

$$
\frac{f(b)-f(a)}{\emptyset(b)-\emptyset(a)}=\frac{f^{\prime}(c)}{\phi^{\prime}(c)} \text { or }
$$

$$
\frac{e^{b}-e^{a}}{e^{-b}-e^{-a}}=\frac{e^{c}}{-e^{-c}} \quad\left(\text { as } f^{\prime}(x)=e^{x}, \varnothing(x)=-e^{-x}\right)
$$

$$
\frac{e^{b}-e^{a}}{\frac{1}{e^{b}}-\frac{1}{e^{a}}}=-e^{2 \mathrm{c}} \quad \text { or }\left(e^{b}-e^{a}\right) \frac{e^{a} \cdot e^{b}}{e^{a}-e^{b}}=-e^{2 \mathrm{c}}
$$

$$
-e^{\mathrm{a}+\mathrm{b}}=-e^{2 \mathrm{c}} \text { therefore }, a+b=2 \mathrm{c}
$$

$$
\text { Therefore } c=\frac{a+b}{2}
$$

$$
\text { Obiviouslyc }=\frac{a+b}{2} \epsilon(a, b) .
$$

Hence the theorem is verified

