Rashtrsant Tukdoji Maharaj Nagpur university, Nagpur

GOVERNMENT INSTITUTE OF SCIENCE, NAGPUR
CLASS:- B.SC.(SEM-I)
SUBJECT:-MATHEMATICS
PAPER II:- CALCULUS
TOPIC:- PARTIAL DIFFERENTIATION

Sub topic:-Partial Differentiation

- Definition:- let $z=f(x, y)$ the function of two independent variable x and y. If we keep y constant and x varies then z becomes a function of x only. The derivative of z with respect to x, keeping y as constant is called partial derivative $\mathrm{pf} z \mathrm{w}$. r . to. x and it is denoted by the symbols $\frac{\partial z}{\partial x}, \frac{\partial f}{\partial x}$ etc.
- $\frac{\partial z}{\partial x}=\lim _{\partial x \rightarrow 0} \frac{f(x+\partial x, y)-f(x, y)}{\partial \mathrm{X}}$
- The derivative of z with respect to y, keeping x as constant is called partial derivative pf z w. r. to. y and it is denoted by the symbols $\frac{\partial z}{\partial y}, \frac{\partial f}{\partial y}$ etc.
- $\frac{\partial z}{\partial y}=\lim _{\partial x \rightarrow 0} \frac{f(x, y+\partial y)-f(x, y)}{\partial y}$

This process of finding derivative of a function of two or more variables with respect to one of these variables keeping others constant is called as partial differentiation.
$>\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial y^{2}}, \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\frac{\partial^{2} z}{\partial x \partial y^{\prime}}$, etc.

Example 1:-z(x+y)=x2+y, show that $\left(\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)^{2}=4\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)$

SOLUTION:- GIVEN $Z(X+Y)=x^{2}+y^{2} \Rightarrow Z=\frac{x^{2}+y^{2}}{X+Y}$, THEN

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{(x+y) 2 x y-x^{2}+y^{2}}{(x+y)^{2}} \\
& \frac{\partial z}{\partial x}=\frac{2 x y+x^{2}-y^{2}}{(x+y)^{2}}
\end{aligned}
$$

SIMILARLY, $\frac{\partial z}{\partial y}=\frac{2 x y-x^{2}+y^{2}}{(x+y)^{2}}$
NOW, $\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}=\left[\frac{2\left(x^{2}+y^{2}\right)}{X+Y}\right]^{2}=4\left[\frac{(x-y)}{X+Y}\right]^{2} \ldots$

$$
\begin{align*}
\operatorname{AND}\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right) & =\left[1-\frac{2 x y+x^{2}-y^{2}}{(x+y)^{2}}-\frac{2 x y-x^{2}+y^{2}}{(x+y)^{2}}\right] \tag{1}\\
& =\frac{2 x y+x^{2}-y^{2}-4 x y}{(x+y)^{2}}=\left[\frac{(x-y)}{X+Y}\right]^{2}
\end{align*}
$$

$$
\begin{equation*}
4\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)=4 \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\left(\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)^{2}=4\left(1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)
$$

Hence Proved.
FOR EXAMPLE 2:- $\mathrm{U}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} ; x^{2}+y^{2}+z^{2}$ IS NOT EQUAL TO ZERO.

$$
\frac{\partial u^{2}}{\partial x^{2}}+\frac{\partial u^{2}}{\partial y^{2}}+\frac{\partial u^{2}}{\partial z^{2}}=0
$$

Thank you

