Govt. Institute of Science Department of Mathematics M.Sc. Sem- I Topology-I

 $T_0 - Space : A \text{ topological space } (X, \tau) \text{ is a } T_0 - Space$ if f for every pair (x, y) of distinct elements $x, y \in X$, \exists an open set which contains one of them but not the other.

Hereditary Property : A property of a topological space which is preserved by its subspace is called hereditary property.

Topological Property : A property of a topological space which is preserved by its homeomorphic image is called topological property.

Example: Prove that a property of being a $T_0 - Space$ is both Hereditary as well as Topological.

Solution: Let (X, τ) be a T_0 – *Space*.

To prove hereditary property:

Let (X^*, τ^*) be a subspace of (X, τ) .

We have to prove X^* is also $T_0 - Space$.

Let $x, y \in X^*$ such that $x \neq y$

Then $x, y \in X$ such that $\neq y$, Since $X^* \subseteq X$

As X is $T_0 - Space$, \exists an open set G in X, such that $x \in G$ but $y \notin G$

Thus, we can find an open set G^* in subspace topo for X^* such that $G^* = X^* \cap G$ and $x \in G^*$ but $y \notin G^*$.

This shows that X^* is $T_0 - Space$.

Hence a property of being a $T_0 - Space$ is hereditary.

To prove Topological Property:

Let (X, τ) be a $T_0 - Space$ and (X^*, τ^*) be a arbitrary topological space.

Let $f: X \to X^*$ be homeomorphism from $T_0 - Space X$ onto an arbitrary topological space X^* .

We have to prove $f(X) = X^*$ is also $T_0 - Space$.

Let $x, y \in X$ such that $x \neq y$

Then f(x) & f(y) are two distinct pts in X^* .

As X is $T_0 - Space$, \exists an open set G in X, such that $x \in G$ but $y \notin G$.

But, a mapping $f: X \to X^*$ is a homeomorphism and therefore the image f(G) is an open set in X^* such that $f(x) \in f(G)$ but $f(y) \notin f(G)$. Thus $f(X) = X^*$ is also $T_0 - Space$.

Hence a property of being a $T_0 - Space$ is topological.

$T_1 - Space:$

A topological space (X, τ) is a T_1 – Space if f for every pair (x, y)of distinct elements $x, y \in X$, \exists two open sets, one containing x but not y, and other containing y but not x.

Example: Prove that a property of being a $T_1 - Space$ is both Hereditary as well as Topological.

Example: Prove that every $T_1 - Space$ is $T_0 - Space$, but converse is not true.