GOVERNMENT INSTITUTE OF SCIENCE COLLEGE,NAGPUR

MATHEMATICS
 B.Sc. Sem-5

PAPER-1:ANALYSIS
 UNIT - III
 ANALYTIC FUNCTIONS

SUBJECT: HARMONIC FUNCTIONS, ORTHOGONAL FAMILIES,CONSTRUCTION OF ANALYTIC FUNCTION.

* HARMONIC FUNCTIONS :

A real valued function u of two variables x and y is said to be harmonic if it has a continuous partial derivatives and satisfies the equation-

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \\
\text { or } \\
\nabla^{2} \mathrm{u}=0
\end{gathered}
$$

This equation is also known as Laplace equation. The functions $u(x, y)$ and $v(x, y)$ which satisfy Laplace's equation are called harmonic functions.
> Theorem:-
If $f(z)=u+i v$ is an analytic function of $z=x+i y$ then prove that u and v are harmonic functions.
Proof:- Let $f(z)=u+i v$ be an analytic function of $z=x+i y$.
\therefore By theorem,
C-R equations are satisfied.
i.e. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \ldots$ (1) and $\quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

To prove:1)u is harmonic.

$$
\text { i.e. } u_{x x}+u_{y y}=0
$$

Diff. eqn (1) w.r.t. x and eqn (2) w.r.t. y , we get

$$
\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right) \text { and } \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial y}\left(-\frac{\partial v}{\partial x}\right)
$$

On adding, we get

$$
u_{x x}+u_{y y}=0
$$

To prove :2) v is harmonic.
i.e. $v_{x x}+v_{y y}=0$

Diff. eqn (1) w.r.t. x and eqn (2) w.r.t. y, we get

$$
\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}\right) \text { and } \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(-\frac{\partial v}{\partial x}\right)
$$

On adding, we get

$$
v_{x x}+v_{y y}=0
$$

Hence proved.

ORTHOGONAL FAMILIES :

Two families of curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ are said to be an orthogonal system if they intersect at right angles at each of their points of intersection.
$>$ Theorem:-
If $w=f(z)=u(x, y)+i v(x, y)$ is an analytic function in domain D, then the one parameter families of curves $\mathrm{u}(\mathrm{x}, \mathrm{y})=c_{1}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=c_{2}$ form two orthogonal families.

Proof :- Let $f(z)=u(x, y)+i v(x, y)$ is an analytic function in domain D.
Hence Cauchy-Riemann equations are satisfied.
i.e. $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad$ and $\quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

Taking differential of $\mathrm{u}(\mathrm{x}, \mathrm{y})=c_{1}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=c_{2}$, we get

$$
\mathrm{du}=0 \quad \text { and } \quad \mathrm{dv}=0
$$

$\Rightarrow \frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0 \quad$ and $\quad \frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y=0$
$\Rightarrow m_{1}=$ slope of the tangent to the curve $\mathrm{u}(\mathrm{x}, \mathrm{y})=c_{1}$ at any point $(\mathrm{x}, \mathrm{y})=\frac{\partial y}{\partial x}=-\frac{u_{x}}{u_{y}}$
and $m_{2}=$ slope of the tangent to the curve $\mathrm{v}(\mathrm{x}, \mathrm{y})=c_{2}$ at any point $(\mathrm{x}, \mathrm{y})=\frac{\partial y}{\partial x}=-\frac{v_{x}}{v_{y}}$
Now, $m_{1} m_{2}=\left(-\frac{u_{x}}{u_{y}}\right)\left(-\frac{v_{x}}{v_{y}}\right)=\frac{u_{x} v_{x}}{u_{y} v_{y}}=\frac{u_{x} v_{x}}{\left(-v_{x}\right) u_{x}}=-1$
\Rightarrow The curves $\mathrm{u}(\mathrm{x}, \mathrm{y})=c_{1}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=c_{2}$ form two orthogonal families.

Question 1:If $u=x^{2}-y^{2}, v=-\frac{y}{x^{2}+y^{2}}$ then show that both u and v satisfies Laplace's equation but $\mathrm{u}+\mathrm{iv}$ is not an analytic function of z .
Proof:-To show that $u+i v$ is not an analytic function of z,we have to show that u and v do not satisfy the Cauchy-Riemann equations $u_{x}=v_{y}, u_{y}=-v_{x}$.
Now,

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=2 x, \frac{\partial u}{\partial y}=-2 y \\
& \frac{\partial v}{\partial x}=-y\left[\frac{(-1) 2 x}{\left(x^{2}+y^{2}\right)^{2}}\right]=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \frac{\partial v}{\partial y}=\frac{-\left(x^{2}+y^{2}\right)-2 y(-y)}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Clearly, $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} \neq \frac{\partial v}{\partial x}$
$\Rightarrow \mathrm{u}+\mathrm{iv}$ is not an analytic function of z .
To prove that u and v both satisfy Laplace's equation, we have to show that $u_{x x}+u_{y y}=0$ and $v_{x x}+v_{y y}=0$

Now, $u_{x x}+u_{y y}=2-2=0$

$$
\therefore u_{x x}+u_{y y}=0
$$

And

$$
\begin{aligned}
v_{x x}+v_{y y} & =2 y\left[\frac{\left(x^{2}+y^{2}\right)^{2}-2\left(x^{2}+y^{2}\right) 2 x x}{\left(x^{2}+y^{2}\right)^{4}}\right]+\frac{2 y\left(x^{2}+y^{2}\right)^{2}-\left(y^{2}-x^{2}\right) 2\left(x^{2}+y^{2}\right) 2 y}{\left(x^{2}+y^{2}\right)^{4}} \\
& =\frac{2 y\left(y^{2}-3 x^{2}\right)}{\left(x^{2}+y^{2}\right)^{3}}+\frac{\left(3 x^{2}-y^{2}\right) 2 y}{\left(x^{2}+y^{2}\right)^{3}}=0
\end{aligned}
$$

$\therefore v_{x x}+v_{y y}=0$
Hence proved.

- Contruction of analytic function :

Method-1 :Milne Thomson's Method:
Case -1]:If the real part u of $f(z)$ is given.
Step-1] Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
Step-2] Find $\mathrm{f}^{\prime}(\mathrm{z})=\frac{\partial u}{\partial x}+\mathrm{i} \frac{\partial v}{\partial x}=\frac{\partial u}{\partial x}-\mathrm{i} \frac{\partial u}{\partial y}$

Step-3]Put $\mathrm{x}=\mathrm{z}$ and $\mathrm{y}=0$ in $\mathrm{f}^{\prime}(\mathrm{z})$.
Step-4]Integrate $f^{\prime}(z)$ to obtain $f(z)$.
Case -2] If imaginary part v of $f(z)$ is given.
Step-1] Find $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$
Step-2] Find $\mathrm{f}^{\prime}(\mathrm{z})=\frac{\partial u}{\partial x}+\mathrm{i} \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}+\mathrm{i} \frac{\partial v}{\partial x}$
Step-3] Put $\mathrm{x}=\mathrm{z}$ and $\mathrm{y}=0$ in $\mathrm{f}^{\prime}(\mathrm{z})$.
Step-4] Integrate $f^{\prime}(z)$ to obtain $f(z)$.
Method-2:By finding harmonic conjugate v and construction of analytic function $f(z)$:
Given :-u is given.
Step-1] Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
Step-2] $\mathrm{d} v=\frac{\partial v}{\partial x} \mathrm{dx}+\frac{\partial v}{\partial x} \mathrm{dy}=-\frac{\partial u}{\partial y} \mathrm{dx}+\frac{\partial u}{\partial x} \mathrm{dy}=\mathrm{Mdx}+\mathrm{Ndy}$

Step-3] $\mathrm{M}=-\frac{\partial u}{\partial y}, \mathrm{~N}=\frac{\partial u}{\partial x}$
Find $\frac{\partial M}{\partial y}$ and $\frac{\partial N}{\partial y}$
If $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial y}$ then eqn (1) is exact differential.
Step-4]Find v by using,

$$
\mathrm{v}=\int_{\text {(taking y constant) }} M d x+\int_{\substack{\text { (terms of } \mathrm{N} \text { which do } \\ \text { not contain } \mathrm{x})}} N d y+c
$$

Step-5] $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$
Question 1:-Find the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ of which the real part is $\mathrm{u}=e^{x}(x \cos y-y \sin y)$.
Solution:-We have $\mathrm{u}=e^{x}(x \cos y-y \sin y)$.

$$
\frac{\partial u}{\partial x}=e^{x}(\cos y)+e^{x}(x \cos y-y \sin y), \frac{\partial u}{\partial y}=e^{x}(-x \sin y-y \cos y-\sin y)
$$

Method-1] $\mathrm{f}^{\prime}(\mathrm{z})=\frac{\partial u}{\partial x}+\mathrm{i} \frac{\partial v}{\partial x}=\frac{\partial u}{\partial x} \mathrm{i} \frac{\partial u}{\partial y}$
$\Rightarrow \mathrm{f}(\mathrm{z})=\int e^{x} \cos y+e^{x}$ (xcosy-ysiny) $+\mathrm{i} e^{x}$ (-xsiny-ycosy-siny) dz
Put $\mathrm{x}=\mathrm{z}$ and $\mathrm{y}=0$ in above equation,
$\Rightarrow \mathrm{f}(\mathrm{z})=\int e^{z} \cos 0+e^{z}(\mathrm{z} \cos 0-0 \sin 0)+\mathrm{i} e^{z}(-\mathrm{z} \sin 0-0 \cos 0-\sin 0) \mathrm{dz}$
$=\int\left(e^{z}+e^{z} \mathrm{z}\right) \mathrm{dz}+\mathrm{c}$
$=e^{z}-e^{z}+\mathrm{ze} e^{z}+\mathrm{c}$
$\mathrm{f}(\mathrm{z})=\mathrm{ze} \mathrm{e}^{\mathrm{z}}+\mathrm{c}$
Method :-2]dv $=\frac{\partial v}{\partial x} \mathrm{~d} x+\frac{\partial v}{\partial x} \mathrm{dy}=-\frac{\partial u}{\partial y} \mathrm{~d} \mathrm{x}+\frac{\partial u}{\partial x} \mathrm{dy}$

$$
=-e^{x}(-x s i n y-y c o s y-s i n y) d x+e^{x}(x \operatorname{cosy}-y s i n y+c o s y) d y
$$

which is of the type $\mathrm{dv}=\mathrm{Mdx}+\mathrm{Ndy}$,
where $\mathrm{M}=-e^{x}$ (-xsiny-ycosy-siny) and $\mathrm{N}=e^{x}$ (xcosy-ysiny + cosy)

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =-e^{x}(-\mathrm{xcosy}+\mathrm{ysin} y-\cos y-\cos \mathrm{y}) \\
& =e^{x}(2 \cos y+\mathrm{xcosy}-\mathrm{ysin} \mathrm{y}) \\
\frac{\partial N}{\partial y} & =e^{x} \cos \mathrm{y}+(\mathrm{x} \cos \mathrm{y}-\mathrm{y} \sin \mathrm{y}+\cos \mathrm{y}) e^{x}=e^{x}(2 \cos \mathrm{y}+\mathrm{x} \cos \mathrm{y}-\mathrm{y} \sin \mathrm{y})
\end{aligned}
$$

Hence the given eqn is exact differential. Hence its solution is on integrating v, we get
$\mathrm{v}=\mathrm{\int}$
$M d x$
$+$
$\int \quad N d y$
$+\quad c$
(taking y constant) (terms of N which do not contain x)

$$
\begin{aligned}
\mathrm{v} & =\int-e^{x}(-\mathrm{x} \sin y-\mathrm{y} \cos \mathrm{y}-\sin \mathrm{y}) d x+\int 0 d y+ \\
& =\operatorname{siny} \int x e^{x} d x+(y \cos y+\sin y) \int e^{x} d x+0+c \\
& =[(\mathrm{x}-1) \sin y+\mathrm{ycosy}+\operatorname{siny}] e^{x}+\mathrm{c} \\
& =(\mathrm{x} \sin y+\mathrm{ycosy}) e^{x}+\mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \mathrm{f}(\mathrm{z}) & =\mathrm{u}+\mathrm{iv} \\
& =e^{x}(x \cos y-y \sin y)+i\left[(\mathrm{xsin} y+\mathrm{ycosy}) e^{x}+\mathrm{c}\right] \\
& =\mathrm{x} e^{x}(\cos y+\mathrm{isiny})+\mathrm{iy} e^{x}(\cos y+\mathrm{isiny})+\mathrm{ic} \\
& =(\mathrm{x}+\mathrm{iy}) e^{x} e^{i y}+c^{\prime} \\
\therefore \mathrm{f}(\mathrm{z}) & =\mathrm{ze} e^{z}+c^{\prime}
\end{aligned}
$$

