Rashtrsant Tukdoji Maharaj Nagpur university, Nagpur.

Government Institute Of Science, Nagpur

Class:- B.Sc.(sem-I)
Subject:-Mathematics
paper II:- Calculus
Topic:- Cauchy's integral Formulae.

Cauchy's integral Formula

Theorem:- If $f(z)$ be analytic in a simply connected domain D abd let C be a simply closed curve in d oriented counterclockwise. Then for any point a within C ,
$\int_{C} \frac{f(z)}{z-a} \mathrm{dz}=2 \pi i f(a)$ or $f(a)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-a} \mathrm{dz}$.
Proof:-

Let a be any point within a simple closed contour C.
The function $\frac{f(z)}{z-a}$ is not defined at $z=a$ and hence is nor analytic at the point $\mathrm{z}=\mathrm{a}$.
In the situation its integral cannot be evaluated by means of
Cauchy's theorem at this point ' a '
We deforms c to a circle C_{1} with center 'a'and the radius r so small that C_{1} lies wntirely inside C .
Then $\int_{C} \frac{f(z)}{z-a} \mathrm{dz}=\int_{C_{1}} \frac{f(z)}{\boldsymbol{z}-\boldsymbol{a}} \mathrm{dz}$
The circle C_{1} is given by
$|z-\mathrm{a}|=r$ or $\mathrm{z}-\mathrm{a}=\mathrm{r} e^{i \theta}, 0 \leq \theta \leq 2 \pi$, then
$\int_{C_{1}} \frac{\boldsymbol{f}(\mathbf{z})}{\boldsymbol{z}-\boldsymbol{a}} \mathrm{dz}=\int_{\mathbf{0}}^{2 \pi} \frac{\boldsymbol{f}\left(\boldsymbol{a}+\mathrm{r} e^{i \theta}\right)}{r e^{i \theta}} \mathrm{r} e^{i \theta} \mathrm{i} \mathrm{d} \theta$

$$
\int_{C_{1}} \frac{f(z)}{z-a} \mathrm{dz}=\mathrm{i} \int_{0}^{2 \pi} f\left(a+\mathrm{r} e^{i \theta}\right) \mathrm{d} \theta
$$

Let us shrink C_{1} to a point a by taking $r \rightarrow 0$.

$$
\begin{aligned}
\Rightarrow \lim _{r \rightarrow 0} \int_{C_{1}} \frac{f(z)}{z-a} \mathrm{~d} z & =i \lim _{r \rightarrow 0} \int_{0}^{2 \pi} f\left(a+\mathrm{r} e^{i \theta}\right) \mathrm{d} \theta \\
& =\mathrm{i} \int_{0}^{2 \pi} \lim _{r \rightarrow 0} f\left(a+\mathrm{r} e^{i \theta}\right) \mathrm{d} \theta \\
& =i \int_{0}^{2 \pi} f(a) d \theta \\
& =i \mathrm{f}(\mathrm{a}) \int_{0}^{2 \pi} d \theta
\end{aligned}
$$

$$
=2 \pi i f(a)
$$

$$
\text { Then (1) } \Rightarrow \lim _{r \rightarrow 0} \int_{C} \frac{f(z)}{z-a} d z=\lim _{r \rightarrow 0} \int_{C_{1}} \frac{f(z)}{z-a} d z
$$

$$
\Rightarrow \int_{C} \frac{f(z)}{z-a} d z=\lim _{r \rightarrow 0} \int_{C_{1}} \frac{f(z)}{z-a} d z=2 \pi i f(a)
$$

- Examples:-Using Cauchy integral formula, evaluate the following integrals.
(1) $\int_{C} \frac{z d z}{\left(9-z^{2}\right)(z-i)}$, where C is the circle $|z|=2$ describe in the positive sense.

Solution:- by Cauchy's integral formula,

$$
\begin{aligned}
& f(\mathrm{a})=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-a} \mathrm{~d} z . \\
\Rightarrow & \frac{f(z)}{z-a} \mathrm{dz}=2 \pi i f(a)
\end{aligned}
$$

Where $z=a$ ia a point inside contour C and $f(z)$ is analytic within and upon C.
Let $l=\int_{C} \frac{z d z}{\left(9-z^{2}\right)(z-i)}$

Take $f(z)=\frac{z d z}{\left(9-z^{2}\right)}$ which is analytic within and upon C, since $|z|=2$

Then,

$$
\begin{aligned}
I & =\int_{C} \frac{z d z}{[z-(-i)]} \\
& =2 \pi i f(-i) \\
& =\left[\frac{-i}{\left[9-(-i)^{2}\right.}\right] \\
& =\frac{2 \pi}{9+1} \\
& =\frac{\pi}{5}
\end{aligned}
$$

Thank you

