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SIMULATED ANNEALING TECHNIQUE FOR OPTIMIZATION 

PROBLEM 

0-1 Knapsack Problem: 

 A set of n items is available to be packed into a  Knapsack with capacity ‘C’ 

units. The i
th
 item has value vi attached to it and uses Ci units of capacity (i.e. 

weight of i
th

 item is Ci) the problem is to determine the subset of items that should 

be packed in order to maximize the value subject to the constraint that the weight 

of the packed item does not exceed the total capacity. We have to maximize 

∑ ��
�
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�
��� 	 �. 

In terms of Optimization Problem: 

Ex.  
�� 
 �  ∑ ����
�
���    

  subject to ∑ ����
�
��� 	 �      ;  �� � 0 �� 1  ; � � 1, 2, … � 

Ex.  



Item 

No 
Items 

Capacity 

(Ci) 

Value 

(Vi) 

1 Knife 1 2 

2 Rope 1 3 

3 Food 4 4 

4 Torch 1 2 

5 Tent 5 7 

6 Book 1 1 

Suppose that the maximum capacity is 7 units. 

 

Neighbourhood (Nbd): 

 The nbd of solution (x) i.e. N(x) is a set of solution that can be reached from 

x by some simple operation. If a solution say y is better than any other solution in 

its neighbourhood, then y is called a Local Optimum with respect to this nbd. 

Steepest Descent Method: 

 a subset of feasible solution is explored repeatedly moving from a current 

solution to a neighbouring solution. It uses the descent strategy in which the search 

always moves in to the direction of improvement. 

  Random Descent Method: 

 It selects neighbouring solution randomly and chooses the first solution that 

improves the objective function. 

Move Set: 



 The set of feasible solution that may improve the objective function. 

Single Complement Move Set: 

 This is obtained by changing any zero complement to 1 and any 1 

complement to zero. 

 If more than one solution is feasible and each one of them improves the 

objective function we choose the one that improves the objective function most. 

This procedure is repeated till a local optimum or global optimum is obtained. 

  

 

 

Ex. 
�� 
 � 18�� � 25�� � 11�� � 14�! 

             Subject to 2�� � 2�� � �� � �! 	 3 

  �� � 0 �� 1   ; # � 1, 2, 3, 4. 

Single Complement Method: 

1.  Start with some feasible solution. Suppose �%&' � %1, 0, 0, 0' value of Z = 18. 

�%&' � %1, 0, 0, 0'         %0, 0, 0, 0' ( 
�
%1, 1, 0, 0' ( 
�

 

                                      
%1, 0, 1, 0' ( 
�
%1, 0, 0, 1' ( 
!

 

Move set M = {M1, M3, M4}  

Move Z 



set 

M1 0 

M3 29 

M4 32 

Since move M4 improves the objective function most, it is taken as the feasible 

solution for the next stage �%�' � %1, 0, 0, 1'. 

3) We now find the neighboring solution of �%�' 

�%�' � %1, 0, 0, 1'         %0, 0, 0, 1' ( 
�
%1, 1, 0, 1' ( 
�

 

                                      
%1, 0, 1, 1' ( 
�
%1, 0, 0, 0' ( 
!

 

Move set M = {M1, M4}  

Move 

set 
Z 

M1 14 

M4 18 

Since neither of the moves M1 or M4 improves the objective function, the search 

stops with a local optimum given by �%�' � %1, 0, 0, 1' and value of objective 

function Z = 32. 

Annealing: 

 Annealing means cooling of material in a heat bath. If a solid material is 

heated beyond its melting point and then cooled back into a solid state the 

structural properties of the solid depend on the rate of cooling. 



Ex. Large crystal can be grown by very slow cooling but if a fast cooling is 

employed the crystal will contain large number of imperfections. 

 This method was first published by metropolis. His algorithm simulates a 

change in energy of the system when subjected to a pooling (cooling) process until 

it converges to a steady frozen state. The law of thermodynamics states that at 

temperature ‘T’ the probability of an increase in energy of magnitude δE is given 

by, 

  )*+,- � .�/ 0( 12
345 where K is Boltzmann’s constant. 

 Metropolis simulation technique generates a small disturbance (in energy) 

and calculates the resulting energy change. If energy has decreased, the system 

moves to a new state. However if the energy increases the new state is accepted 

according to the above probability. The process is repeated for a pre determined 

number of iterations at each temperature after which the temperature is decreased 

until the system freezes into a steady state. 

 Thus any local optimization algorithm can be converted into an annealing 

algorithm by allowing for the inclusion of non-improving moves in the search 

algorithm according to the probability given above. 

Simulated Annealing Search 

 This method allows for inclusion of non-improving moves in the search 

method. While improving moves are directly accepted, non-improving moves are 

not out rightly (directly) rejected. They are accepted or rejected according to 

probabilities attached to them. 

Method: 

 The move selection process at each iteration begins with a random choice of 

a provisional move (feasible) totally ignoring its impact on the objective function. 



 Next the net improvement in the objective function ∆obj is calculated for the 

chosen move. This move is always accepted if it improve the objective function 

since in this case  ∆obj > 0. 

 If however ∆obj ≤ 0 (non-improved) then chosen move is not derectly 

rejected insyead the probability of acceptance which is given by exp(∆obj/q) is 

calculated. 

Here ∆obj : net improvement in the objective function 

 q : temperature controlling the randomness of the search. 

Thus the simulated annealing search method selects the improving moves but also 

accepts the non-improving moves. This method usually begins with a large value 

of q which is decreased after every few iteration. 

 

 

 

 

SIMULATED ANNEALING ALGORITHM FOR OPTIMIZATION 

Step 0  Initialization 

a) Choose some initial feasible solution X
(0)

. 

b) Choose the iteration limit tmax. 

c) Choose a relatively large initial temperature q. 

d) Set the incumbent solution (current solution) as �6. 

i.e. �6 � �%&' �7 7 � 0 

Step 1 Find all the feasible neighbors of X
(0) 

 and define the move set M. Let 

∆MX be one such move belonging to M.     

Step 2 If no move ∆MX in the move set M leads to a feasible neighbor of the 

current solution  �6 at any iteration or if t = tmax then stop the procedure. The current 

solution �6 at this stage gives the approximate optimum solution. 



Step 3 Provisional move:  Randomly choose a feasible move ∆MX belonging 

to M as a provisional move and call it as ∆MX
(t+1)

 and compute the net 

improvement in the objective function i.e. ∆obj and move to �%8' 9 �%8:�'. 

Step 4 If ∆obj > 0, directly accept the move ∆MX
(t+1)

 as the feasible solution 

�%8:�' for the next iteration. If however ∆obj < 0 (i.e. the move is non-improving 

move) then do not discard this move directly. Instead find the probability of 

acceptance given by .
∆<=>

?  and then accept or reject the provisional move with the 

above probability. For this generate a random number R from U(0,1) distribution 

and if  

)%�@@./7��@.' � .
∆<=>

?  A B, accept the provisional move  ∆MX
(t+1)

 as the feasible 

solution �%8:�' for the next iteration. 

If %�@@./7��@.' � .
∆<=>

? C B , reject the move. 

Step 5 incubent solution (current solution) 

 If the value of the objective function with �%8:�' is superior to that of 

current solution (present) which is �6 then set �6 � �%8:�'. 

Step 6      Temperature reduction 

 If a successful number of iterations have been completed since the 

last temperature changed then reduce the temperature q. 

Step7 Incrementation: 

 Set t = t +1 and go to step 1. 

If the procedure stops, �6 gives the approximate optimum solution. 

Since q is reduced as the search proceeds more and more non-improving moves get 

rejected at the probability of acceptance declines with the decreasing q. 

Steps in brief: 

1. Start with some initial feasible solution X
(0

. Set �6 � �%&'. 



2. Using the single complement method (or some other method) find the 

feasible neighbor of  X
(0)

 i.e. find the move set M. the move set may consists 

of  both improving and non-improving moves. 

3. Choose one move randomly from the move set. If M1 and M2 are two 

moves, then generate a random number R1 from U(0,1) distribution. 

If  R1 > 0.5 choose M1 

  else choose M2. 

4. Find ∆obj = current value of Z – previous value of Z. 

5. If ∆obj > 0 then the move selected is the improving move. Accept it directly 

as �%8:�'. 
6. if  ∆obj ≤ 0 then the move selected is non-improving. Find 

)%�@@./7��@.' � .
∆<=>

? . 

7. Generate R2 from U(0,1) distribution. If )%�@@./7��@.' � .
∆<=>

? D  B�, 

accept the non-improving move as the feasible solution �%8:�' for the next 

iteration. However if )%�@@./7��@.' � .
∆<=>

? C  B� reject the non-

improving move. 

In this manner we will either stay at some local optimum or moves towards 

to global optimum.  

 

Knapsack Problem using Simulated Annealing Method 

Ex.   
�� 
 �  18�� � 25�� � 11�� � 14�! 

   EFG�.@7 7�   2�� � 12�� � �� � �! 	 3 

�� � 0 �� 1   ;   # � 1, 2, 3, 4. 
Let the constraint   

H � 2�� � 12�� � �� � �! 

 

Step 0:   Start with some initial feasible solution 

 �%&' � %1, 0, 0, 0' 

 Set q = 10 and tmax = 3 (maximum iteration limit is 3). 

 We have, at t = 0 �6 � �%&' � %1, 0, 0, 0'  value of Z = 18. 

Step 1:    Find the feasible neighbours of  �%&'. 



                        �%�' � %1, 0, 0, 0'         %0, 0, 0, 0' ( 
�
%1, 1, 0, 0' ( 
�

 

                                                             
%1, 0, 1, 0' (  
�
%1, 0, 0, 1' (  
!

 

   Move set M = {M3, M4} Since M3 and M4 satisfies Q.  

 Step 2:    Choose one of the moves M3 or M4 randomly. For this generate  

  R1 from U(0,1) distribution. 

  Suppose R1 = 0.79 since R1 > 0.5, choose M4 as the provisional  move. 

  Value of Z = 32. 

  �obj = Current Value – Previous Value 

   = 32 – 18 = 14 > 0 

  Since �obj > 0 M4 is an improving move. So accept M4 as the 

 feasible solution for the next iteration.  

 �%�' � %1, 0, 0, 1'  I  �6 �  %1, 0, 0, 1'  

 t = t + 1= 1 

Step 3:    Again find the feasible neighbours of  �%�'. 

                        �%�' � %1, 0, 0, 1'         %0, 0, 0, 1' ( 
�
%1, 1, 0, 1' ( 
�

 

                                                             
%1, 0, 1, 1' (  
�
%1, 0, 0, 0' (  
!

 

   Move set M = {M1, M4} Since M1 and M4 satisfies Q. 



 To choose between M1 or M4 we generate a random number say R2 from 

U(0,1) distribution. 

 Suppose R2 = 0.91 since R2 > 0.5, choose M4 as the provisional  move. 

  Value of Z = 18. 

  �obj = Current Value – Previous Value 

   = 18 – 32 = -14 < 0 

  Since �obj < 0 M4 is non-improving move. Now we find probability 

 of acceptance. 

 )%�@@./7��@.' � .
∆<=>

? � .
JKL
KM � .N�.! � 0.247 

 To accept or reject this move we generate another random observation say 

R3 from U(0,1) distribution. Suppose R3 = 0.41 (say). Since P(acceptance) < R3 we 

reject this provisional move M4.   

 Consider the move M1 from the move set. M4 = (0, 0, 0, 1) Value of Z = 14. 

�obj = Current Value – Previous Value 

   = 14 – 32 = -18 < 0 

  Since �obj < 0 M1 is non-improving move. Now we find probability 

 of acceptance. 

 )%�@@./7��@.' � .
∆<=>

? � .
JKP
KM � .N�.Q � 0.165 

 To accept or reject this move we generate another random observation say 

R4 from U(0,1) distribution. Suppose R4 = 0.10 (say). Since P(acceptance) > R4 we 

accept this move as the feasible solution for the next iteration.   



�%�' � %0, 0, 0, 1'  I  �6 �  %0, 0, 0, 1'  

 t = t + 1= 2 

Step 4:    Find the feasible neighbours of  �%�'. 

                        �%�' � %0, 0, 0, 1'         %1, 0, 0, 1' ( 
�
%0, 1, 0, 1' ( 
�

 

                                                             
%0, 0, 1, 1' (  
�
%0, 0, 0, 0' (  
!

 

Since M1 = (1, 0, 0, 1) has been already been considered. Move set M = {M2, M3} 

Since M2 and M3 satisfies Q. 

 To choose between M2 or M3 we generate a random number say R5 from 

U(0,1) distribution. 

 Suppose R2 = 0.98  since R2 > 0.5, choose M3 as the provisional move. 

 Value of Z = 25. 

  �obj = Current Value – Previous Value 

   = 25 – 14 = 11 > 0 

 Since �obj > 0 M3 is improving move. S0 accept M3 as the feasible solution. 

Since t = 3 = tmax we stop iteration. 

t S%T'feasible soln. value of Z q 
incumbent 

soln 
soln vector SU 

0 (1, 0, 0, 0) 18 10 18 �6 �  %1, 0, 0, 0' 

1 (1, 0, 0, 1) 32 10 32 �6 �  %1, 0, 0, 1' 

2 (0, 0, 0, 1) 14 10 32 �6 �  %1, 0, 0, 1' 



3 (0, 0, 1, 1) 25 10 32 �6 �  %1, 0, 0, 1' 

∴ optimum solution at the end of the procedure is   
�6 �  %1, 0, 0, 1' and value of Z = 32. 

 

 

 

 

 

 

 

 

 


